152=-16t^2+154t+110

Simple and best practice solution for 152=-16t^2+154t+110 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 152=-16t^2+154t+110 equation:



152=-16t^2+154t+110
We move all terms to the left:
152-(-16t^2+154t+110)=0
We get rid of parentheses
16t^2-154t-110+152=0
We add all the numbers together, and all the variables
16t^2-154t+42=0
a = 16; b = -154; c = +42;
Δ = b2-4ac
Δ = -1542-4·16·42
Δ = 21028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{21028}=\sqrt{4*5257}=\sqrt{4}*\sqrt{5257}=2\sqrt{5257}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-154)-2\sqrt{5257}}{2*16}=\frac{154-2\sqrt{5257}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-154)+2\sqrt{5257}}{2*16}=\frac{154+2\sqrt{5257}}{32} $

See similar equations:

| 87.50=3500×0.05t | | z/3+2=−84 | | 10x2+27x-28=0 | | z3+2=−84 | | z/3+2=84 | | 164=-16t^2+138t+120 | | -28+2r=4(8r-9) | | 2(6-2b)=20 | | 2x+2x=4x+3x-15+2x+24 | | 4x+18=42. | | 4/6=(p+9)/5 | | p+2(p-3)=9 | | 152=-16t^2+114t+112 | | 2/9x+5=7/9x-10 | | 2(a-5)=23 | | 9d+7=61 | | 36=-4z-12 | | 200=11*3*x | | 10=y+54 | | 5x-98=72 | | 1-a=2 | | 12x(x+1)=0 | | C+16=20;x=4 | | 95+63+90+28x=360 | | 4y-62=66 | | 1/3(x-9)=-4 | | 5z-60=100 | | 3(3s+10)=39 | | 50-p=-1 | | 7(2l=10=126 | | 3=2n-2 | | -x+54=3x+26 |

Equations solver categories